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Abstract

Vibrations of an autoparametric system, composed of a nonlinear mechanical oscillator with an attached damped

pendulum, around the principal resonance region, are investigated in this paper. Approximate analytical solutions of the

model are determined on the basis of the Harmonic Balance Method (HBM). Correctness of the analytical results is

verified by numerical simulations and experimental tests performed on an especially prepared experimental rig. The

influence of all essential parameters such as damping, excitation amplitude and frequency, nonlinear stiffness of the spring,

on the localisation of the instability region and the system dynamics is presented in the work. Regions of regular system

oscillations, chaotic motions, and full rotation of the pendulum are confirmed experimentally.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

An autoparametric system differs from a parametric system because vibrations are caused by internal
coupling involving at least two modes. From the mathematical point of view, the excitation comes from
nonlinear coupling terms present in the equations of motion [1]. This kind of model can lead to an energy
transfer between different vibration modes, as well as to resonances, possible only in this specific problem.

Autoparametric vibrations of an excited oscillator with an attached pendulum have been analysed in many
papers in different aspects. This two degree-of-freedom system represents an interesting physical dynamical
structure, which finds important practical engineering applications. Special dampers mounted in buildings and
working against earthquakes, or against river vortices [2] (Fig. 1a and b), pendulums mounted on high
chimneys [3], all can be mentioned as examples. Tondl et al. [4] cite several other applications of such systems.

The phenomenon of vibrations absorption of the mass-spring oscillator, defined as the main system, can be
achieved due to proper pendulum swinging. However, for some parameters the situation may worsen and
pendulum vibrations may increase dramatically, then the protection of the structure (modelled as a mass-
spring oscillator) is lost [5]. Despite the fact that the main system is periodically excited, its response can be
periodic, quasi-periodic, or even chaotic [4], for different system parameter combinations. Paper [6] presents
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Fig. 1. A pendulum mounted on a bridge tower (a) and a pendulum mounted in Yokohama Landmark Tower (b) [2].
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the method of averaging to study forced, weakly nonlinear oscillations of a two degree-of-freedom
autoparametric vibration absorber around the resonant region. Hatwal et al. [7–9] show periodically
modulated motions and chaos of an autoparametric system with a pendulum. The response of the resonantly
excited autoparametric system, near the internal resonance, is shown in Ref. [10]. It has been found that the
system motions undergo a pitchfork bifurcation to motion in which a pendulum executes nonzero response
and then the oscillator vibrates with a very low amplitude.

The purpose of this paper is to study new dynamical phenomena of the coupled oscillator–pendulum system
for realistic data, and then to check possible instability region occurrence. The dynamics inside this region and
the influence of a nonlinear supporting spring as a possible new element which may eliminate or shift
unwanted instability, are analysed numerically, and in detail. First, various solutions for the lower position of
the pendulum and the influence of individual parameters on system dynamics, as well as transition to two
different types of chaotic responses are demonstrated. Then, experimental tests which confirm chosen
theoretical results are presented.

2. Model of the vibrating system and equations of motions

The considered mechanical model, presented in Fig. 2, consists of two main subsystems: (I) a nonlinear
oscillator composed of a mass m1 and a nonlinear spring and, (II) a pendulum made of two masses mp and m2.
The pendulum is attached at a pivot to the mass m1. The oscillator is forced by a classical linear spring due to
motion of the base (kinematical excitation). The stiffness of the oscillator’s spring is assumed to be nonlinear
Duffing type function:

F s ¼ kxþ k1x
3 (1)

The motion of the model is described by two generalised coordinates namely the displacement of the oscillator
in the vertical direction x, and the angle of the pendulum rotation j. Viscous damping of the pendulum and
the oscillator is expressed by the cj and c coefficients, respectively. The length of the pendulum is denoted by l.

The differential equations of motions are derived by application of Lagrange’s equations of the second kind:

ðm1 þm2 þmpÞ €xþ c _xþ ðk þ k2Þxþ k1x
3 þ m2 þ

1
2
mp

� �
lð €j sin jþ _j2 cos jÞ ¼ k2Q cos ot (2)
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Fig. 2. A physical model of the autoparametric system.
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m2 þ
1
3
mp

� �
l2 €jþ cj _jþ m2 þ

1
2
mp

� �
lð €xþ gÞ sin j ¼ 0 (3)

Eqs. (2) and (3) are typical for this type of autoparametric two degree-of-freedom system [11]. The non-
linear term of the supporting spring is a new element which appears in the model. Introducing dimen-
sionless time t ¼ o0t, where o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk þ k2Þ=ðm1 þm2 þmpÞ

p
is the natural frequency of the oscillator,

and then the dimensionless coordinates X ¼ x/xst and j�j, where xst ¼ ðm1 þm2 þmpÞg=ðk þ k2Þ is
the static displacement of the linear oscillator, we express the equations of motion in the dimensionless
form:

€X þ a1 _X þ X þ gX 3 þ mlð €j sin jþ _j2 cos jÞ ¼ q cos Wt (4)

€jþ a2 _jþ lð €X þ 1Þ sin j ¼ 0 (5)

The natural frequency of the linear oscillator is normalised to unity in Eq. (4). Dimensionless parameters take
the following definitions:

a1 ¼
c

ðm1 þm2 þmpÞo0
; a2 ¼

cj

ðm2 þ ð1=3ÞmpÞl
2o0

; W ¼
o
o0

m ¼
ðm2 þ ð1=3ÞmpÞl

2

ðm1 þm2 þmpÞx2
st

; l ¼
ðm2 þ ð1=2ÞmpÞxst

ðm2 þ ð1=3ÞmpÞl
; q ¼

k2Q

ðk þ k2Þxst

; g ¼
k1

k þ k2
x2

st. (6)

Autoparametric excitation in Eq. (4) is caused by the coupling terms, i.e. the second derivative and the square
of the first derivative, of the pendulum coordinate j.

3. Approximate analytical solutions

Because the equations of motions (4) and (5) include nonlinear terms it is difficult to find their strictly
correct solutions. Therefore, in the neighbourhood of principal parametric resonance approximate solutions
are sought. Around this area the mass m1 vibrates with frequency W, which is equal to the excitation frequency,
while the pendulum oscillates with frequency W/2. On the basis of this assumption we seek solutions in the
form of

xðtÞ ¼ AðtÞ cosðWtþ f1ðtÞÞ

jðtÞ ¼ BðtÞ cos
W
2
tþ f2ðtÞ

� �
(7)
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Taking into account small oscillations of the pendulum around the equilibrium point jE0, the nonlinear
terms sinj and cosj are expanded by Taylor’s series

sin j ¼ j�
j3

6
; cos j ¼ 1�

j2

2
(8)

Amplitudes A(t), B(t) and phases f1(t), f2(t) describe the oscillator and pendulum motions, respectively. For
better clarity, the A(t)�A, B(t)�B, f1(t)�f1, f2(t)�f2 notations are used. Introducing Eqs. (7) and (8) into
Eqs. (4) and (5), and then balancing the coefficients of the corresponding sine and cosine terms, we get a set of
first-order approximate differential equations:

a1 _Aþ _B sinðf1 � 2f2Þ 2
W
2
mlB�

1

3

W
2
mlB3

� �
� 2WA _f1 � 2

W
2
mlB2 _f2 cosðf1 � 2f2Þ

þ
1

6

W
2

� �
mlB4 _f2 cosðf1 � 2f2Þ þ Að1� W2Þ þ

3

4
gA3 �

W
2

� �2

mlB2 cosðf1 � 2f2Þ

þ
1

12

W
2

� �2

mlB4 cosðf1 � 2f2Þ � q cosðf1Þ ¼ 0 (9)

� 2W _Aþ _B cosðf1 � 2f2Þ �2
W
2
mlBþ

1

3

W
2
mlB3

� �
� a1A _f1 � 2

W
2
mlB2 _f2 sinðf1 � 2f2Þ

þ
1

6

W
2

� �
mlB4 _f2 sinðf1 � 2f2Þ � a1WA�

W
2

� �2

mlB2 sinðf1 � 2f2Þ þ
1

12

W
2

� �2

� mlB4 sinðf1 � 2f2Þ � q sinðf1Þ ¼ 0 (10)

a2 _B� _f1 cosðf1 � 2f2Þ WlAB�
1

8
lWAB3

� �
� 2

W
2

B _f2 � B
W
2

� �2

� lþ
1

8
lB2

 !

� cosðf1 � 2f2Þ
1

2
lW2AB�

1

16
lW2AB3

� �
¼ 0 (11)

� 2
W
2
_Bþ _f1 sinðf1 � 2f2Þ lWAB�

1

8
lWAB3

� �
� a2B _f2 � a2B

W
2

� �

þ sinðf1 � 2f2Þ
1

2
lW2AB�

1

16
lW2AB3

� �
¼ 0 (12)

Assuming that amplitudes and phases are slow functions of time, the derivatives of the second order, and
terms having derivatives of a power higher then one, are neglected in the equations above. Furthermore,
according to paper [12], in which the so-called Improved Harmonic Balance Method (HBM) is proposed, for
small oscillations of the pendulum we may assume

B4

48
� 0;

B3

16
� 0 (13)

For a steady state, amplitudes and phases are constant, thus the first-order derivatives are equal to zero

_A ¼ 0; _B ¼ 0; _f1 ¼ 0; _f2 ¼ 0 (14)

Introducing Eq. (14) into Eqs. (9)–(12), and taking into account the simplifications mentioned above we
obtain the following equation:

ð1� W2ÞAþ
3

4
gA3 � ml

W
2

� �2

B2 cosð2f2 � f1Þ ¼ q cos f1 (15)
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�Wa1Aþ ml
W
2

� �2

B2 sinð2f2 � f1Þ ¼ q sin f1 (16)

W
2

� �2

� lþ
l
8

B2 þ A
lW2

2
cosð2f2 � f1Þ ¼ 0 (17)

a2
W
2

� �
þ A

lW2

2
sinð2f2 � f1Þ ¼ 0 (18)

The solutions of the nonlinear algebraic Eqs. (15)–(18) represent amplitudes and phases of the model response
in the steady state. It has not been possible to obtain solutions of these equations in analytical form. However,
if the nonlinearity of the spring is neglected, g ¼ 0, we can determine A2 from Eqs. (15) and (16) and A2 from
Eqs. (17) and (18)

A2 ¼
B4

16W4
þ

B2ð4lW2 � 16l2Þ

16l2W4
þ

64l2 � 32W2lþ 4W4 þ 16W2a22
16l2W4

(19)

A2 ¼
mlB4ð2W2 � 2� mlW4Þ

16ð1þ ð�2þ a21ÞW
2
þ W4Þ

þ
4mlB2ð3� 3W2 � 2a1a2Þ

16ð1þ ð�2þ a21ÞW
2
þ W4Þ

þ
q2

1þ W2ð�2þ a21Þ þ W4
(20)

Then, equating Eqs. (19) and (20), and making some algebraic manipulations we find the following
equations

B4 �l
2m2W4 þ 2lmð�1þ W2Þ

16ð1þ ð�2þ a21ÞW
2
þ W4Þ

�
1

16W4

 !
þ B2 �16lmð�1þ W2Þ þ 4mW2ð�1� 2a1a2 þ W2Þ

16ð1þ ð�2þ a21ÞW
2
þ W4Þ

�
�16l2 þ 4lW2

16l2W4

 !

þ
q2

1þ W2ð�2þ a21Þ þ W4
�

64l2 � 32lW2 þ 4ð4a22W
2
þ W4Þ

16l2W4
¼ 0 (21)

tan f1 ¼
4Wð4A2a1 þ B2a2mÞ

16A2ðW2 � 1Þ � B2mððB2 � 8Þlþ 2W2Þ

tanð2f2 � f1Þ ¼
a2ðW=2Þ

ðW=2Þ2 � lþ ðlB2=8Þ
(22)

which allow for amplitude and phase determination. For the full nonlinear case, it is necessary to solve the set
of Eqs. (15)–(18) numerically.

4. Stability of harmonic solutions

Stability analysis of the harmonic solutions is carried out by using the approximate Eqs. (9)–(12) with
further assumptions

B4

48
� 0;

B3

16
� 0;

B4

12
� 0 (23)

Determining derivatives _A; _f1; _B; _f2 from Eqs. (9)–(12) we get the so-called amplitude modulation equations,
which can be written in shortened form

_A ¼ f 1ðA;f1;B;f2Þ

_f1 ¼ f 2ðA;f1;B;f2Þ

_B ¼ f 3ðA;f1;B;f2Þ

_f2 ¼ f 4ðA;f1;B;f2Þ (24)



ARTICLE IN PRESS
J. Warminski, K. Kecik / Journal of Sound and Vibration 322 (2009) 612–628 617
where

f 1 ¼
W _A

W
; f 2 ¼

W _f1

W
; f 3 ¼

W _B

W
; f 4 ¼

W _f2

W
(25)

Individual determinants in Eq. (25) are expressed as follows:

W ¼

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

�����������

�����������
; W _A ¼

a0 a12 a13 a14

b0 a22 a23 a24

c0 a32 a33 a34

d0 a42 a43 a44

�����������

�����������

W _B ¼

a11 a0 a13 a14

a21 b0 a23 a24

a31 c0 a33 a34

a41 d0 a43 a44

�����������

�����������
; W _f1

¼

a11 a12 a0 a14

a21 a22 b0 a24

a31 a32 c0 a34

a41 a42 d0 a44

�����������

�����������

W _f2
¼

a11 a12 a13 a0

a21 a22 a23 b0

a31 a32 a33 c0

a41 a42 a43 d0

�����������

�����������
(26)

The coefficients shown in determinants (26) are defined as

a11 ¼ a1; a12 ¼ �2WA; a13 ¼ ml
W
2

B sin O
B2

3
� 2

� �
; a14 ¼ �2ml

W
2

B2 cos O (27)

a21 ¼ �2W; a22 ¼ �a1A; a23 ¼ ml
W
2

B cos O
B2

3
� 2

� �
; a24 ¼ 2ml

W
2

B2 sin O (28)

a31 ¼ 0; a32 ¼ lWAB cos O
B2

8
� 1

� �
; a33 ¼ a2; a34 ¼ �WB (29)

a41 ¼ 0; a42 ¼ lWAB sin O
B2

8
� 1

� �
; a43 ¼ �W; a44 ¼ �a2B (30)

a0 ¼ q cos f1 � Aþ W2A�
3

4
gA3 þ mlB2 W

2

� �2

cos O (31)

b0 ¼ q sin f1 þ a1WA� mlB2 W
2

� �2

sin O (32)

c0 ¼ B
W
2

� �2

� lBþ
lB3

8
þ

1

2
lW2AB cos O (33)

d0 ¼ a2B
W
2
þ

1

2
lW2AB sin O; where O ¼ 2f2 � f1 (34)

Perturbing the analysed solutions as follows, Aþ dA; f1 þ df1; Bþ dB; f2 þ df2, and then substi-
tuting them into Eq. (24), after which subtraction from the unperturbed solutions, and then taking into
account the linear part of their power series expansions, we get a set of linear differential equations in the
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variations dA; df1; dB; df2

d _A

d _f1

d _B

d _f2

2
66664

3
77775 ¼ J

dA

df1

dB

df2

2
66664

3
77775, (35)

where the Jacobian J takes the form

J ¼

qf 1

qA

qf 1

qf1

qf 1

qB

qf 1

qf2

qf 2

qA

qf 2

qf1

qf 2

qB

qf 2

qf2

qf 3

qA

qf 3

qf1

qf 3

qB

qf 3

qf2

qf 4

qA

qf 4

qf1

qf 4

qB

qf 4

qf2

2
6666666666664

3
7777777777775
. (36)

The stability of the approximate harmonic solutions depends on the eigenvalues of the Jacobian (36). If at
least one of the roots has a positive real part then the solution becomes unstable.

5. Experimental setup

An experiment for the two degree-of-freedom model, presented schematically in Fig. 2, has been performed
on an especially prepared experimental test stand. A photograph (Fig. 3) shows a real mechanical system in
which the main parts are: the pendulum (1) which may achieve a full rotation, and the oscillator (2), together
with additional masses (3). The mass moment of inertia of the pendulum can be modified by changing the
masses (4) or the pendulum length. The pivot of the pendulum contains an optoelectronic converter MHK 40
(5) which has an angular measurement accuracy of 2p/2000. Motion of the system is generated by an AC
motor (7), an inverter (6) and a system which changes the rotation of the AC motor into translational motion.
The damping coefficient of the linear viscous damper (8) is controlled by a hydraulic valve connected to an oil
tank (9). The frequency of the vertical oscillations is controlled by the inverter. The amplitude of the
kinematical excitation is set by the eccentric cam, fixed to the drive shaft. As an alternative option, a nonlinear
Fig. 3. General view of the experimental setup and its measurement devices.
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composite magnetorheological damper RD 1097-01 (10) with a proper control system can be also applied.
This MR damper has been effectively used to control the system motion to avoid unwanted situations—
(see paper [13]).

The spring (11) which connects masses m1 with the foundation is considered in the form of two variants,
specifically linear or nonlinear, as required. Commercial software and hardware are used for data acquisition
and control of the system. A strain gauge is fixed to the damper (12) to allow for damping force measurement.
An additional strain gauge is mounted under the spring connecting the mass m1 with the ground. The angle of
rotation j of the pendulum and the displacement x of the oscillator are measured by an optoelectronic
converter and the special proximity detector (13). Velocity and acceleration of the pendulum and oscillator are
calculated from received signals by their numerical derivation. Application of additional sensors allows also
for measuring the damping force and the force transmitted on the foundation.

6. Numerical results and experimental verification

Numerical analysis of the system is carried out on the basis of data taken from a practical system as shown
in Fig. 3. Dimensionless parameters, calculated according to Eq. (6) take these values,

a1 ¼ 0:261354; a2 ¼ 0:1; q ¼ 2:45094; m ¼ 17:2278; l ¼ 0:127213; g ¼ 0. (37)

Direct numerical simulations have been performed on the basis of Eqs. (4) and (5) in Matlab–Simulink and the
Dynamics package [14] by using the fourth-order Runge–Kutta method. Initial conditions are fixed as: x ¼ 0,
x0 ¼ 0, j ¼ 0.1, j0 ¼ 0. Analytical results have been presented for the same data by using equations derived by
the HBM as presented in Section 4.

In this type of autoparametric system with an attached pendulum, near the frequency W ¼ 1, there exists a
region where, due to internal excitation, the principal parametric resonance takes place. The resonance curves
of the pendulum and the oscillator are presented in Fig. 4. This resonance is manifested by relatively small
vibrations of the oscillator with frequency W and oscillations of the pendulum with frequency W/2. The solid
line and black dots in Fig. 4 denote stable amplitudes (trivial and nontrivial) obtained by analytical and
experimental investigations, the dashed line and white points represent unstable results, respectively. The
stability of the system has been determined analytically from the eigenvalues of the Jacobian matrix (36).

Inside the resonance the motion of the oscillator is reduced by the pendulum oscillations, which play the
role of a dynamical absorber. Outside this region this phenomenon fades out and then the oscillator’s
amplitudes tend to high values (see dashed line in Fig. 4b).
Fig. 4. Analytical resonance curve and experimental results of the oscillator (a) and the pendulum (b), a1 ¼ 0.261354, a2 ¼ 0.1.
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As can be seen in Fig. 4, there exists an unstable region in the middle of the resonance, located around the
amplitude ‘well’. If the system works in this area, then regular motion becomes quasi-periodic or chaotic [12].
Transition to this region can lead to unexpected increase of amplitude and eventually to destruction of the
system. Therefore, it is very important to avoid such situations. If the system has to work in this region, then
we should know how to reduce or control the system dynamics.

Fig. 5 presents a numerical bifurcation diagram and the corresponding Lyapunov exponents (Fig. 5b),
near the main parametric resonance. If the frequency of excitation W takes a value from the range �0.6 to 0.62,
then chaotic motions appear. It is interesting that this motion is represented by an irregular attractor
which consists only of swings (‘chaotic swings’). For the frequency W�0.63–0.72 and W�0.98–1.19,
chaotic motions are composed of both rotation and swinging of the pendulum. If the frequency of
excitation is located between 0.73 and 0.97 then the pendulum performs full rotations. Experimental
tests confirm unstable regions existence in which the pendulum executes chaotic motions (rotation
and swinging) or full rotations. However, chaotic motions consisting only of swinging have not been
detected experimentally. This could probably be caused by dynamically changed damping in the pendulum
pivot and in the oscillator. This could eliminate the very narrow region of chaotic swings, discovered
numerically.

In Fig. 6a and b, experimental time histories showing transition to the chaotic motion and rotation of the
pendulum are presented. They are in accordance with the Lyapunov exponent diagram obtained numerically
from the model.

The chaotic attractor, corresponding to the time history in Fig. 6a for W ¼ 0.7, is presented in Fig. 7. Fig. 7a
shows the numerical attractor for the pendulum. To confirm this result by an experimental test, the attractor
from a real signal is reconstructed (Fig. 7b). For the phase portrait reconstruction only one signal of the
angular velocity of the pendulum is used [15]. This choice of signal makes the analysis easier because in the
velocity domain the rotation of the pendulum is eliminated.

The attractor reconstruction is carried out using a time series analysis application [15]. This software for
time series analysis is based on the theory of nonlinear deterministic dynamical systems. In order to undertake
attractor reconstruction, the time delay (t1) is calculated using the mutual information method, providing
important information about reasonable delay times, while the false neighbours statistic is applied
for estimating the embedding dimension. An exact mathematical description of these functions is given in
Refs. [16,17]. The result of the analysis is presented in Fig. 7b. Both the numerical and experimental attractors
have similar shape, arrangement, and dimension. This analysis fully confirms agreement of theoretical and
experimental investigations.
Fig. 5. Bifurcation diagram (a) and Lyapunov exponents (b), a1 ¼ 0.261354, a2 ¼ 0.1.
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Fig. 6. Experimental time histories of the pendulum, (a) chaotic motions for W ¼ 0.7 and (b) transition to rotation for W ¼ 0.73.

Fig. 7. Chaotic numerical attractor (a) and reconstructed experimental attractor (b), for frequency W ¼ 0.7.
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7. Influence of the system parameters on the instability region

Considering that the pendulum is designed as a dynamical vibration absorber (Fig. 1), it is necessary to
recognise the reason of the occurrence of the instability region and to find the system parameters’ influence on
this phenomenon. The set of parameters should be chosen carefully, to eliminate the instability, but not to
reduce the range of active pendulum operation. The first possible intuitive solution is to increase the system
damping.

Figs. 8 and 9 present the influence of damping on the pendulum amplitudes. Both graphs are plotted on the
basis of Eq. (21). From the results of Fig. 8, we can reduce the instability area by increasing the damping of
the oscillator a1. The critical value of those damping coefficients a1E0.6 causes total vanishing of the region.
The influence of this parameter is clearly visible on the surface cross-sections in Fig. 8b. The disadvantage of
such a solution is that the right hand side of the resonance curve (the higher frequency side) is totally reduced.

The increase of the pendulum damping in the pivot causes reduction both to the right and the left hand sides
of the resonance curves, which essentially decreases the effectiveness of the pendulum as a dynamical damper
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Fig. 8. Pendulum’s amplitude versus excitation frequency and damping, 3D graph (a) and cross-sections for different coefficients of

oscillator damping a1 (b).

Fig. 9. Pendulum’s amplitude versus excitation frequency and damping, 3D graph (a) and cross-sections for different coefficients of the

pendulum damping a2 (b).
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(Fig. 9). For damping in the pivot of a2E0.5, this instability does not exist at all, however a very narrow
region of absorption is the price we pay for this solution.

Fig. 10 presents the influence on the excitation amplitude q on the unstable region. If the value of excitation
amplitude is increasing then the instability effect is still present, and the area is widened and the pendulum
oscillations increase dangerously.

The dynamics of the system strongly depend on the values of the nonlinear terms which couple the main
structure (the oscillator) and the pendulum. The response of the system is very sensitive to changes to the
parameters l and m. Parameter l couples the oscillator and pendulum motion (Eqs. (4) and (5)). Parameter m
only appears in the oscillator equation of motion and plays the role of a gain in the product ml in the oscillator
equation. In a real system, the length of the pendulum and its mass moment of inertia are responsible for these
parameters values.

The influence of both parameters l and m on the pendulum oscillation around the principal para-
metric resonance is presented in Figs. 11 and 12, respectively. These plots allow one to determine a proper
selection of the pendulum parameters, required for a given structure (the oscillator). However, modification
of the parameter l or m while the system vibrates in order to control the response online could be rather
difficult.
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Fig. 10. Pendulum’s amplitude versus excitation frequency and excitation amplitude, 3D graph (a) and cross-sections for different

amplitudes of excitation q (b).

Fig. 11. Pendulum’s amplitude versus excitation frequency and parameter l, 3D graph (a) and cross-sections for different coefficients l (b).
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Another proposal to change the system dynamics is to include the nonlinear stiffness of the supported
spring (Eq. (1)). Because it has not been possible to solve this nonlinear case analytically, the influence of the
supporting spring stiffness is analysed by numerical methods.

Figs. 13 and 14 show bifurcation diagrams for different parameters g. For a very small nonlinearity of
g ¼ 0.01, we observe two chaotic regions where, if g increases, up to g ¼ 0.02, then the first chaotic region is
reduced and moved, together with the second area, to the right side. This result can be explained by the
stiffening effect. Moreover, the working area of the pendulum regular swinging is wider.

The bifurcation diagrams calculated for larger values of the g parameter, g ¼ 0.05 and 0.1, are shown in
Fig. 14. For g ¼ 0.05 chaos disappears which means that in the range W�0.5–2 the instable region is completely
eliminated. Further increase of stiffness lead to a new chaotic region arising (Fig. 14b), but the subharmonic
pendulum response is very wide.

Exemplary numerical chaotic attractors are given in the Poincaré section in Fig. 15. In both examples, the
chaotic attractor consists of full rotation and swinging of the pendulum.
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Fig. 12. Pendulum’s amplitude versus excitation frequency and parameter m, 3D graph (a) and cross-sections for different coefficients m (b).

Fig. 13. Bifurcation diagram of the pendulum for g ¼ 0.01 (a) and g ¼ 0.02 (b).

J. Warminski, K. Kecik / Journal of Sound and Vibration 322 (2009) 612–628624
Introduction of stiffness nonlinearity seems to be a promising method for improving the dynamical
absorption phenomenon. Nevertheless, bearing in mind that for different initial conditions the nonlinearity
may lead to several steady states, the basins of attraction of the solution have also to be checked. In Fig. 16,
for the frequency W ¼ 0.65, g ¼ 0.01, we observe two possible solutions, represented by attractors Nos. 1
and 2. If the stiffness rises, up to g ¼ 0.02 (Fig. 17), then there are three solutions with relevant basins of
attraction: Nos. 1 and 2 denote the two double-point attractors, and No. 3—the six-point attractor.

Fig. 18a and b presents numerical time histories for g ¼ 0.02 and frequency W ¼ 0.65 for two different initial
conditions of the pendulum, corresponding to the subharmonic response with the 1:2 and 1:6 periods ratio.

It is worth pointing out another interesting phenomenon which may appear if the system works in the
unstable region. Assuming again g ¼ 0, we can notice for W ¼ 0.59, the pendulum’s vibration centre is shifted.
Depending on the initial conditions the centre of the angle j may be shifted in the positive (Fig. 19b) or the
negative (Fig. 19a) direction. The two possible shifts are symmetric around the lower static position of the
pendulum. The shift of the pendulum’s vibration has been detected in the real setup, too. An experimental
time history of the pendulum is presented in Fig. 20a and a relevant phase trajectory in Fig. 20b.
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Fig. 14. Bifurcation diagram of the pendulum for g ¼ 0.05 (a) and g ¼ 0.1 (b).

Fig. 15. Poincaré maps for the pendulum, g ¼ 0.02, W ¼ 1.25 (a), and g ¼ 0.1, W ¼ 1.6 (b).
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In experimental tests only the positive centre shift has been found. It probably results from a difference
between real and modelled basins of attraction.

8. Conclusions

The autoparametric system considered in this paper exhibits an instability region near the principal
parametric resonance for some sets of parameters. This phenomenon may lead to a rotation of the
pendulum, or to its chaotic motion, composed of both swinging and rotation. Existence of this instability is
not required if the pendulum is to be designed as a dynamical absorber. The unpredictable increase
of the vibrations may eventually destroy the protected structure. An increase in damping of the pendulum
causes decaying of the instability but also a big reduction of the resonant curve, an unwanted effect from
the vibration dynamical absorption point of view. Unwanted motion can also be eliminated by proper
choice of the pendulum parameters, but these parameters cannot be modified online, as the pendulum
operates. Another solution for improving the system’s behaviour is to introduce a nonlinear supporting
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Fig. 16. Basins of attraction of the pendulum, W ¼ 0.65, g ¼ 0.01.

Fig. 17. Basins of attraction of the pendulum, W ¼ 0.65, g ¼ 0.02.
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spring, which rejects or shifts the chaotic response and widens the range of the effective absorption
interval. However, the additional nonlinearity introduces new attractors with their basins of attractions.
Therefore, the proposed new design can be combined with a modification of the oscillator damping,
which also reduces the instability region. A promising device which can be applied in the system is
a magnetorheological damper together with a smart spring which could allow for online control of the
system motion.
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Fig. 18. Numerical time histories of the pendulum for stiffness coefficient g ¼ 0.02, W ¼ 0.65, and for different initial conditions of the

pendulum, j ¼ 0.1 (a) and j ¼ 0.7 (b).

Fig. 19. Numerical time histories of the pendulum for linear system (g ¼ 0) and W ¼ 0.59, and different initial conditions of the pendulum

j ¼ 0.1 (a) and j ¼ 0.5 (b).

Fig. 20. Experimental time histories of the pendulum for linear system (a) and phase portrait (b) for initial condition of the pendulum

j ¼ 0.1, and W ¼ 0.59, g ¼ 0.
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Numerical and analytical results for regular and chaotic vibrations are in good accordance with
experimental tests. The attractor, reconstructed on the basis of real signals, confirms the possible chaotic
behaviour of the system. The experimental investigations of the real design with the nonlinear spring and the
magnetorheological damper will be carried out in future work.
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